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Spinor dynamics in a multi-
component Fermi gas

● Description by density matrix / Wigner function
● Collisionless regime (mean field)
● Spinor dynamics
● Collisional approach (extension to mean field)
● More spinor dynamics
● Conclusions and outlook

Outline



  

Spinor gases
Overview and motivation

Spinor gas: Spin F, 2F+1 internal states
..., m = -3/2, m = -1/2, m = 1/2, m = 3/2, … ...

Collisions preserve total spin → more than 2 components lead to spinor dynamics

Internal states after the collision can be different than before.

Spinor dynamics = population transfer

Quadratic Zeeman effect 

→ Zeeman energy not conserved
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Trapped spinor fermi system
Hamiltonian and density matrix

Single particle:

Two particle:

S-wave-scattering, weak interactions:

We describe the system and its time evolution with the single-particle-density-matrix



  

Wigner function
Definition:

Advantages: Knowing W we can extract many observables by integration / tracing
Suited for collisional methods

1) In phase-space: Thomas-Fermi distribution, exact for non-interacting gas.

2) In spin space: Lots of freedom to create spin states. Examples:

         

Mixed state (incoherent): Pure state (coherent):



  

Equation of motion

Semiclassical approximation for coordinates (not spin!):

Von Neumann-equation:

Wick decomposition (mean field or Hartree-Fock approximation)

Mean field → effective Potential

Quantum Liouville equation:

Spin-mean-field (leading order)   mean-field correction to trap

Exchange interaction



  

Coherent spinor dynamcis
Coherent population transfer, described by mean-field theory.
Has been also observed in spinor BEC.

Parameters: Initial coherences, scattering lengths, number of states, QZE,...
Many possibilities.

Here: F=9/2, initial state coherent superposition of m=±9/2, ±7/2, ±5/2

Oscillatory modes

Frequency ~ QZE

Magnetic field



  

Coherent spinor dynamcis
Coherent population transfer, described by mean-field theory.

Here: F = 5/2, initial state m =  ±3/2, small seed in m = ±1/2

Exponential modes

Feature:
m=±5/2 does not participate, can create lower 
spin subsystem

Formation of spatial structures:
Interplay of orbital and spin degrees of freedom

m = ±1/2

x
t



  

Spin waves
Collective excitations arising from exchange interaction.
Spatial movement of spin components. Described by mean-field approach.

Coherent states are very susceptible to magnetic field gradient 
Gradient displaces spin components in the trap

Problem: Spatial separation reduces spinor dynamics
Spin waves easy to excite, hard to get rid of

Outlook: Interesting to study for higher spins due to presence of higher magnetic multipoles.

Dipole oscillations for F=3/2

Gradient
present



  

More spinor dynamics
Is a mean-field approach good enough?

For a mixed initial state, mean-field predicts no spinor dynamics. 
Coherence (off-diagonal elements) needed.

Experimental data, trapped 40K, F= 9/2 
incoherent spin mixture m = ±1/2

Courtesy of Sengstock group

Vanishes for incoherent states

Mean field theory predicts:



  

Collisional approach
Is a mean-field approach good enough?

Equation is a collisionless Boltzmann equation

gn

Hydrodynamic regime

?

Collisionless (Knudsen) regime
Are we still here?

Superfluid

Experimental data, trapped 40K

Looks like relaxation to equilibrium



  

Collisional approach
Correction to mean-field approach

Boltzmann equation:

R.h.s: “Collisional Integral”, change of density-matrix due to collisions
Many approaches possible, we choose the Lhuillier-Laloë – Ansatz (not the only one!)

Change of the single-particle density matrix
Δt small, but still longer than duration of collisions

A collision is a two-particle process, we know what happens to the two-particle density matrix

(Heisenberg S-matrix)

L.-L.: No entanglement before and after the collision - Boltzmann's molecular chaos (Stosszahlansatz)

Why? Many-particle system.
No repeated collisions between same particles

J. N. Fuchs, D. M. Gangardt and F. 
Laloë, Eur. Phys. J. D 25, 57 (2003)

Two-particle situation, F=9/2:
Krauser et al. ArXiv 1203.0948 (2012)



  

Collisional approach
Collision integral

S-matrix to T-matrix:

Wigner transform everything, get terms linear and quadratic in T:

Expand T-matrix in powers of the scattering lengths:

First order reproduces the mean-field equation of motion

Second order, beyond mean-field, includes momentum transfer 

Quadratic Zeeman-shift



  

Collisional dynamics
Relaxation induced by collisions. Long time scales

Incoherent process. Damps spin waves, coherent dynamics

Particles exchange momentum, restore system to equilibrium

Standard approach: Relaxation time approximation

High spin system may be too complicated

Collision in presence of QZE: m2 > m'2 , k' > k

m, k

-m, -k
m', -k'

-m k'

Comparison with experimental data

Momentum distribution, relaxation to equilibrium 
blocked: pre-thermalization?

Δ
QZE



  

Conclusions

We have derived a multi-component Boltzmann-equation that combines
● Mean field effects

● Coherent spinor dynamics
● Spin waves

● Collision effects
● Relaxation
● Damping of coherent phenomena
● Thermalization

in a trapped multi-component Fermi gas for a wide range of parameters
● Spin F, magnetic field, temperature, initial coherences, scattering lengths,...

and with good agreement with experiments.
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