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Many-Body Tunneling

Why tunneling?!

Tunneling is omnipresent

Characterizes a lot of processes

α-decay
fusion
fission
photo dissosiciation
photo association

Processes take place in many-particle systems

In principle all systems are correlated and open.
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Intro: Why Bosons?

Interparticle interactions + Trapping potential are tunable.

A rich variety of phenomena can be modelled.

“Simple” (linear) governing equation: ĤΨ = i∂tΨ (TDSE).

Reduced dimensional Ψ often fails to describe the physics

Atom lasers BECs1

1
Cornell E.A. and Wieman C.E. Rev.Mod.Phys. 74, 875, (2002); Ketterle W. Rev.Mod.Phys. 74, 1131, (2002)
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How to approach Many-Body Quantum Mechanics?

How to approach the multidimensional/many-body TDSE?

Schrödinger equation: ĤΨ = i∂tΨ

Simple, but Ψ = Ψ(x1, ..., xN , t) and N ∼ 10 or more

The Hamiltonian is well-known:

Ĥ =
N∑
i=1

(
T̂i + V (x̂i )

)
+ λ0

N∑
i<j

δ(xi − xj)

=
N∑
i=1

ĥi + λ0

N∑
i<j

δ(xi − xj)
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How to approach Many-Body Quantum Mechanics?

To solve the TDSE we need to deal with the high
dimensionality of many-body wavefunctions

Variational approaches:

Gross-Pitaevskii (1961)2

Best Mean Field (BMF) / Time-Dependent Multi-Orbital
Mean-Field (TDMF) (2003/2007)3

The MultiConfigurational Time-Dependent Hartree (for
Bosons) Method (2007/2008)4

2
Gross E.P., Il Nuovo Cimento 20 (3): 454 (1961); Pitaevskii, L., Sov. Phys. JETP 13 (2): 451-454 (1961).

3
Cederbaum, L. S. and Streltsov, A. I., Phys. Lett. A 318, 564 (2003); Alon,O. E., Streltsov, A. I. and

Cederbaum, L. S., Phys. Lett. A 362, 453 (2007).
4

Meyer H.-D., Manthe U. and Cederbaum L.S., Chem.Phys.Lett. 165, 73 (1990); Manthe U., Meyer H.-D. and
Cederbaum L.S., J.Chem.Phys., 97, 3199 (1992); Streltsov A.I., Alon O.E. and Cederbaum L.S., Phys.Rev.Lett. 99,
030402, (2007); Alon O.E., Streltsov A.I. and Cederbaum L.S., Phys.Rev.A 77, 033613, (2008)
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MCTDHB method: Theory.

The Hamiltonian:

Ĥ =
N∑
i=1

ĥ(xi ) +
∑
i<j=1

Ŵ (xi − xj)

Ansatz for the wavefunction:

Ψ(x1, ..., xN , t) =
∑
~n

C~n(t)|~n; t〉;

|~n; t〉 =
1√

n1! · · · nM !

(
b̂†1(t)

)n1

· · ·
(
b̂†M(t)

)nM
|vac〉

Dirac-Frenkel Variational Principle with respect to Coefficients and
Orbitals:

〈δΨ|H − i∂t |Ψ〉 = 0

Tunneling Dynamics with MCTDHB
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MCTDH(B): Theory.

5

Ansatz: |Ψ(t)〉 =
∑
{~n} C~n(t)|~n, t〉

TDVP:

δS [{Φi (x , t)}{C~n(t)}]
δΦ∗i (x , t)δC ∗~n (t)

=

∫
dt
(
〈δΨ|Ĥ − i∂t |Ψ〉 −

∑
kj µkj(t)

[
〈Φk |Φj〉 − δMkj

])
δΦ∗i (x , t)δC ∗~n (t)

5Image: Courtesy of Markus Schröder.
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Tunneling Many-Body Systems

This talk: λ = λ0(N − 1) = 0.3;N = 2, 4, 101.
Tunneling Dynamics with MCTDHB
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Integrals of Densities

Pnot(t) =
∫ C
−∞ ρ(x)dx

Movie of ρ(x , t and φk(x , t); k = 1, ..., 4.
Movie of ρ(k , t) and ρ(k , t)−gaussian fit(k).
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Integrals of Densities
Momentum Densities

Densities of the Emitted Bosons in Momentum Space
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Natural Occupations
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Coherence from Natural Occupations
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Correlation Functions
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Coherence from Natural Occupations
Coherence from Correlations
The Model

A Model of the Process
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Conclusions

The tunneling process in open systems is characterized by
different coherence properties in distinct spatial regions or
momentum domains.

The involved momenta are defined by the chemical potentials
of systems with different particle numbers, N,N − 1, ..., 2, 1.

The many-body tunneling process is a superposition of
one-by-one processes.
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Outlook

Different potentials, e.g. with a threshold.

Define coherence properties of quantum systems locally.

Measures and analytical models for quantum many body
dynamics in general.

Tunneling Dynamics with MCTDHB
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:

Lenz Cederbaum, Ofir Alon,

Alexej Streltsov

Computations:

XE6 (Hermit) @ HLRS Stuttgart

$$$:
Minerva Foundation

Thank you for your attention!
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Supplementary - Analysis programs

A solution, Ψ(x1, ..., xN ; t) =
∑
~n C~n(t)|~n; t〉, was obtained. What

next?

Specially adapted analysis tools necessary.

Sampling and FFT methods are essential (full grid
representations cost > Terabytes for a single point in time).

Efficient I/O is crucial.

Demonstration: Sampled (reduced grid density and space)
g (1)(x1|x ′1, t), with ng = 216;M = 4; nconf = 10. Full time
slice would require
(216) · (216) · 4 · 10 · 16bytes= 2.74 · 1012bytes.

Tunneling Dynamics with MCTDHB
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Supplementary – MCTDHB: Equations of Motion.

Equations of Motion (EOM):
Coupled —— Non-linear —— Integro-Differential.

M Orbitals: i∂t |φj〉 = P̂

ĥ|φj〉+
M∑

k,s,q,l=1

{ρ(t)}−1
jk ρksqlŴsl |φq〉


(
N + M − 1

N

)
Coefficients: i∂tC~n(t) =

∑
~n′

〈~n; t|Ĥ|~n′; t〉C~n′

MCTDHB package: Solve the EOM, efficiently.
Use Adams-Bashforth-Moulton (ABM) for Orbital EOM
(recently: also BS,RK,ZVODE).
Use Short Iterative Lanczos (SIL) for Coefficients’ EOM.
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Supplementary – The current MCTDHB integration
scheme

SIL Propagate C (0) 7→ C ( τ2 ) using hkq(0),Wkqsl(0), obtain
ρkq( τ2 ), ρkqsl(

τ
2 );

ABM/RK/ZVODE Propagate Φ(0) 7→ Φ( τ2 ) using ρkq( τ2 ), ρkqsl(
τ
2 ).

ABM/RK/ZVODE Propagate Φ(0) 7→ Φ′( τ2 ) using ρkq(0), ρkqsl(0), obtain
error estimate.

ABM/RK/ZVODE Propagate Φ( τ2 ) 7→ Φ(τ) using ρkq( τ2 ), ρkqsl(
τ
2 ), obtain

hkq(τ),Wksql(τ) using Φ(τ).

SIL Propagate C ( τ2 ) 7→ C (τ) using hkq(τ),Wkqsl(τ), obtain
ρkq(τ), ρkqsl(τ).

SIL Backwards Propagate C ( τ2 ) 7→ C ′(0) using
hkq(τ),Wkqsl(τ) obtain error estimate.

Tunneling Dynamics with MCTDHB
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Supplementary - MCTDHB method: Reduced Density
Matrices

The one-body reduced density Matrix (RDM):

ρ(x1|x ′1; t) = 〈Ψ|Ψ̂†(x ′1)Ψ̂(x1)|Ψ〉

= N

∫
Ψ∗(x ′1, x2, ..., xN)Ψ(x1, ..., xN)dx2 · · · dxN

=
∑
a,b

ρab(t)φ∗a(x ′1)φb(x1)

The two-body RDM:

ρ(x1, x2|x ′1, x ′2; t) = 〈Ψ|Ψ̂†(x ′1)Ψ̂†(x ′2)Ψ̂(x1)Ψ̂(x2)|Ψ〉

= N(N − 1)

∫
Ψ∗(x ′1, x

′
2, x3, ..., xN)dx3 · · · dxN

=
∑

a,b,c,d

ρabcdφ
∗
a(x ′1)φ∗b(x ′2)φc(x1)φd(x2)

Tunneling Dynamics with MCTDHB
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Supplementary - Normalized Correlation Functions

The first order correlation function:

g (1)(x1|x ′1; t) =
ρ(1)(x1|x ′1)√

ρ(1)(x1|x1)ρ(1)(x ′1|x ′1)

The p-th order correlation function:

g (p)(x1, ..., xp|x ′1, ..., xp; t) =
ρ(p)(x1, ..., xp|x ′1, ..., xp)√∏p
µ=1 ρ

(1)(xµ|xµ)ρ(1)(x ′µ|x ′µ)

Tunneling Dynamics with MCTDHB
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Supplementary – MCTDH vs MCTDHB

Numerical effort for N bosons and M orbitals:

MCTDH MCTDHB

Configurations
(
MN

) (
M + N − 1

N

)
N = 4,M = 10 104 715

N = 5,M = 10 105 2002

N = 25,M = 6 > 1019 142506

N = 100,M = 5 > 1069 4598126

System consists of

few bosons ⇒ symmetrization of MCTDH algorithm
many bosons ⇒ exploit symmetry by using the MCTDHB6

6
Streltsov A.I., Alon O.E. and Cederbaum L.S., Phys.Rev.Lett. 99, 030402 (2007); Alon O.E., Streltsov A.I.

and Cederbaum L.S., Phys.Rev.A 77, 033613 (2008)
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Supplementary – MCTDHB package: Key Developments

Huge grids necessary: Fast Fourier transform (FFT)
collocation to circumvent expensive DVR-matrix-vector
operations.

Analysis tools: Sampling and FFT methods.

Efficiency: Parallelization of integrators, hybridly and
problem-size adapted parallel evaluation of the right-hand
sides of the EOM.

Tunneling Dynamics with MCTDHB
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Supplementary – The Problem Size Adaptive Hybrid
Parallelization

Problem Size

Slave-Processes:
OpenMP eval. of

W_sl Terms

Small

All Processes:
OpenMP 

eval. W_sl terms 

Big

Master-Process:
OpenMP eval. of

action of ĥ

All Processes:
MPI-OpenMP

eval. 

All Processes:

OpenMP eval. Coefft's EOM

ORBITAL EOMs

Coefficients' EOM

Tunneling Dynamics with MCTDHB
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Supplementary – MCTDH(B) package: Software
Development

Four golden rules:

1 Coordination: Version management — Subversion (svn),
Mercurial (Hg) or Git.

2 Big steps with small tests: Scientific software’s
development is best done test-driven: Implement a test suite
(i.e. automated tests for consistency after building for instant
feedback).

3 Code visualization for optimizations: Use
performance analysis software (Scalasca, Tau, Periscope [all
free]) for code visualization.

4 Documentation: Use doxygen for automatic (online) user
manual and code description.

Tunneling Dynamics with MCTDHB
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Supplementary – Example: Typical Problem Sizes

Number of particles: N ∼ 2, ...,∼ 107.

Number of gridpoints/basis functions: ng = 2, ..., 221

Spatial dimensionality: D = 1, 2, 3

Demonstration with
D = 2; ng = 216 = 64k ;N = 101;M = 4; nconf = 182104.
Computation time ∼ hours, ∼ 100s CPU hours.
Primitive grid size for this
example:216·101 = 21616 = 2.914 · 10486(!!!)

Tunneling Dynamics with MCTDHB
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Supplementary – Some History: TDGP

The GP ansatz for the wavefunction:

|Ψ〉 = |N; t〉 =
1√
N!

N∏
i=1

Φ(xi , t)

Time-Dependent Variational Principle (TDVP):

δS [Φ(x , t)]

δΦ∗(x , t)
!

= 0 =

∫
dt
(
〈δΨ|Ĥ − i∂t |Ψ〉 − µ(t) [〈Φ|Φ〉 − 1]

)
δΦ∗(x , t)

The equation of motion / the TDGP:

iΦ̇(x , t) =
[
ĥ + λ0(N − 1)|Φ(x , t)|2

]
Φ(x , t)

Tunneling Dynamics with MCTDHB
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Supplementary – Some more recent History: BMF/TDMF

The TDMF ansatz for the wavefunction:

|Ψ〉 = |n1, n2, ..., nM ; t〉 = Ŝ

 n1∏
i=1

Φ1(xi , t) · · ·
nM∏

i=N−nM+1

ΦM(xi , t)


TDVP:

δS [{Φi (x , t)}]
δΦ∗q(x , t)

!
= 0 =

∫
dt
(
〈δΨ|Ĥ − i∂t |Ψ〉 −

∑
kj µkj(t)

[
〈Φk |Φj〉 − δMkj

])
δΦ∗q(x , t)

The M equations of motion:

i |Φ̇k〉 = P̂

ĥ + λ0(nk − 1)|Φk |2
M∑
l 6=k

2λ0nl |Φl |2
 |Φk〉

P̂ = 1−
M∑
i=1

|Φi 〉〈Φi | Tunneling Dynamics with MCTDHB
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Supplementary – Orbital EOM in Detail

i∂t |φj〉︸︷︷︸
ABM

= P̂

[
ĥ|φj〉︸ ︷︷ ︸

O(ng log ng )

+
M∑

k,s,q,l=1

{ρ(t)}−1
jk ρksqlŴsl |φq〉︸ ︷︷ ︸

O(M4);#{k,s,q,l}+O(M2)Ŵsl–integrals

]

Ŵsl(x) =

∫
φ∗s (x ′)Ŵ (x − x ′)φl(x

′)dx ′

A problem-size-adaptive hybrid parallelization.

OpenMP-parallelized ABM.

Tunneling Dynamics with MCTDHB
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Supplementary – Coefficients’ EOM in Detail

i∂tC~n(t)︸ ︷︷ ︸
SIL

=
∑
~n′

〈~n; t|Ĥ|~n′; t〉C~n′︸ ︷︷ ︸
(N+M−1

N )

SIL is a Krylov-Method ⇒ Needs {Ĥ|Ψ〉, Ĥ2|Ψ〉, ..., ĤK |Ψ〉}.
An efficient mapping/re-addressing7 scheme allowed to
hybridly parallelize the evaluation of Ĥ and its powers.

7
A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 81, 022124 (2010)
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