Insights on the Many-Body Physics of Tunneling from Numerically Exact Solutions of the Time-Dependent Schrödinger Equation for Ultracold Bosons

Tunneling Dynamics with MCTDHB

Densities and Integrals thereof Coherence and a Model for the Process Conclusions, Outlook and Acknowledgements

Outline

Outline Many-Body Physics of Tunneling Why Bosons?! Many-Body Quantum Mechanics MCTDH(B): Theory Tunneling Many-Body Systems

- 2 Densities and Integrals thereof
- 3 Coherence and a Model for the Process
- Onclusions, Outlook, Acknowledgements

Densities and Integrals thereof Coherence and a Model for the Process Conclusions, Outlook and Acknowledgements

Many-Body Tunneling

Why tunneling?!

- Tunneling is omnipresent
- Characterizes a lot of processes
 - α -decay
 - fusion
 - fission
 - photo dissosiciation
 - photo association

Many-Body Physics of Tunneling

Quantum mechanical: Many-body tunneling

(日) (同) (三) (三)

- Processes take place in *many-particle* systems
- In principle *all* systems are correlated and open.

Outline Many-Body Physics of Tunneling Why Bosons?! Many-Body Quantum Mechanics MCTDH(B): Theory Tunneling Many-Body Systems

Intro: Why Bosons?

- Interparticle interactions + Trapping potential are tunable.
- A rich variety of phenomena can be modelled.
- "Simple" (linear) governing equation: $\hat{H}\Psi = i\partial_t \Psi$ (TDSE).
- Reduced dimensional Ψ often fails to describe the physics

Atom lasers

¹Cornell E.A. and Wieman C.E. Rev.Mod.Phys. **74**, 875, (2002); Ketterle W. Rev.Mod.Phys. **74**, 1131, (2002)

Outline Many-Body Physics of Tunneling Why Bosons?! Many-Body Quantum Mechanics MCTDH(B): Theory Tunneling Many-Body Systems

How to approach Many-Body Quantum Mechanics?

How to approach the multidimensional/many-body TDSE?

- Schrödinger equation: $\hat{H}\Psi = i\partial_t \Psi$
- Simple, but $\Psi = \Psi(x_1, ..., x_N, t)$ and $N \sim 10$ or more

• The Hamiltonian is well-known:

$$\hat{H} = \sum_{i=1}^{N} \left(\hat{T}_i + V(\hat{x}_i) \right) + \lambda_0 \sum_{i < j}^{N} \delta(x_i - x_j)$$
$$= \sum_{i=1}^{N} \hat{h}_i + \lambda_0 \sum_{i < j}^{N} \delta(x_i - x_j)$$

(日) (同) (三) (三)

Outline Many-Body Physics of Tunneling Why Bosons?! Many-Body Quantum Mechanics MCTDH(B): Theory Tunneling Many-Body Systems

How to approach Many-Body Quantum Mechanics?

- To solve the TDSE we need to deal with the high dimensionality of many-body wavefunctions
- Variational approaches:
 - Gross-Pitaevskii (1961)²
 - Best Mean Field (BMF) / Time-Dependent Multi-Orbital Mean-Field (TDMF) (2003/2007)³
 - The MultiConfigurational Time-Dependent Hartree (for Bosons) Method (2007/2008)⁴

² Gross E.P., II Nuovo Cimento **20** (3): 454 (1961); Pitaevskii, L., Sov. Phys. JETP **13** (2): 451-454 (1961).

³Cederbaum, L. S. and Streltsov, A. I., Phys. Lett. A **318**, 564 (2003); Alon,O. E., Streltsov, A. I. and Cederbaum, L. S., Phys. Lett. A **362**, 453 (2007).

⁴Meyer H.-D., Manthe U. and Cederbaum L.S., Chem.Phys.Lett. **165**, 73 (1990); Manthe U., Meyer H.-D. and Cederbaum L.S., J.Chem.Phys., **97**, 3199 (1992); Streltsov A.I., Alon O.E. and Cederbaum L.S., Phys.Rev.Lett. **99**, 030402, (2007); Alon O.E., Streltsov A.I. and Cederbaum L.S., Phys.Rev.A **77**, 033613, (2008) ≥ ► < ≥ ► ≥

Densities and Integrals thereof Coherence and a Model for the Process Conclusions, Outlook and Acknowledgements Outline Many-Body Physics of Tunneling Why Bosons?! Many-Body Quantum Mechanics MCTDH(B): Theory Tunneling Many-Body Systems

MCTDHB method: Theory.

The Hamiltonian:

$$\hat{H} = \sum_{i=1}^{N} \hat{h}(x_i) + \sum_{i < j=1} \hat{W}(x_i - x_j)$$

Ansatz for the wavefunction:

$$\begin{split} \Psi(x_1,...,x_N,t) &= \sum_{\vec{n}} C_{\vec{n}}(t) |\vec{n};t\rangle; \\ |\vec{n};t\rangle &= \frac{1}{\sqrt{n_1!\cdots n_M!}} \left(\hat{b}_1^{\dagger}(t) \right)^{n_1} \cdots \left(\hat{b}_M^{\dagger}(t) \right)^{n_M} |vac\rangle \end{split}$$

Dirac-Frenkel Variational Principle with respect to Coefficients **and** Orbitals:

$$\langle \delta \Psi | H - i \partial_t | \Psi \rangle = 0$$

(日) (同) (三) (三)

Densities and Integrals thereof Coherence and a Model for the Process Conclusions, Outlook and Acknowledgements Outline Many-Body Physics of Tunneling Why Bosons?! Many-Body Quantum Mechanics MCTDH(B): Theory Tunneling Many-Body Systems

MCTDH(B): Theory.

Ansatz: $|\Psi(t)\rangle = \sum_{\{\vec{n}\}} C_{\vec{n}}(t) |\vec{n}, t\rangle$ TDVP:

$$\frac{\delta S[\{\Phi_i(x,t)\}\{C_{\vec{n}}(t)\}]}{\delta \Phi_i^*(x,t)\delta C_{\vec{n}}^*(t)} = \frac{\int dt \left(\langle \delta \Psi | \hat{H} - i\partial_t | \Psi \rangle - \sum_{kj} \mu_{kj}(t) \left[\langle \Phi_k | \Phi_j \rangle - \delta_{kj}^M \right] \right)}{\delta \Phi_i^*(x,t)\delta C_{\vec{n}}^*(t)}$$

⁵Image: Courtesy of Markus Schröder.

э

Densities and Integrals thereof Coherence and a Model for the Process Conclusions, Outlook and Acknowledgements Outline Many-Body Physics of Tunneling Why Bosons?! Many-Body Quantum Mechanics MCTDH(B): Theory Tunneling Many-Body Systems

Tunneling Many-Body Systems

Tunneling Dynamics with MCTDHB

Integrals of Densities Momentum Densities

Integrals of Densities

$$P_{not}(t) = \int_{-\infty}^{C} \rho(x) dx$$

Movie of $\rho(x, t \text{ and } \phi_k(x, t); k = 1, ..., 4.$
Movie of $\rho(k, t)$ and $\rho(k, t)$ -gaussian fit(k).

Tunneling Dynamics with MCTDHB

-

< 17 ▶

э

Integrals of Densities Momentum Densities

Densities of the Emitted Bosons in Momentum Space

Tunneling Dynamics with MCTDHB

Coherence from Natural Occupations Coherence from Correlations The Model

Natural Occupations

Coherence from Natural Occupations Coherence from Correlations The Model

Correlation Functions

Tunneling Dynamics with MCTDHB

Coherence from Natural Occupations Coherence from Correlations The Model

A Model of the Process

Tunneling Dynamics with MCTDHB

Conclusions Outlook Acknowledgements

Conclusions

- The tunneling process in open systems is characterized by different coherence properties in distinct spatial regions or momentum domains.
- The involved momenta are defined by the chemical potentials of systems with different particle numbers, N, N − 1, ..., 2, 1.
- The many-body tunneling process is a superposition of one-by-one processes.

イロト イポト イヨト イヨト

Conclusions Outlook Acknowledgements

- Different potentials, e.g. with a threshold.
- Define coherence properties of quantum systems locally.
- Measures and analytical models for quantum many body dynamics in general.

Conclusions Outlook Acknowledgements

Lenz Cederbaum, Ofir Alon, Alexej Streltsov

GRiD

Computations:

XE6 (Hermit) @ HLRS Stuttgart

・ロト ・同ト ・ヨト ・ヨト

Minerva Foundation

Thank you for your attention!

Conclusions Outlook Acknowledgements

Supplementary - Analysis programs

A solution, $\Psi(x_1, ..., x_N; t) = \sum_{\vec{n}} C_{\vec{n}}(t) |\vec{n}; t\rangle$, was obtained. What next?

- Specially adapted analysis tools necessary.
- Sampling and FFT methods are essential (full grid representations cost > Terabytes for a single point in time).
- Efficient I/O is crucial.
- Demonstration: Sampled (reduced grid density and space) $g^{(1)}(x_1|x'_1, t)$, with $n_g = 2^{16}$; M = 4; $n_{conf} = 10$. Full time slice would require $(2^{16}) \cdot (2^{16}) \cdot 4 \cdot 10 \cdot 16$ bytes= $2.74 \cdot 10^{12}$ bytes.

・ロト ・四ト ・ヨト ・

Conclusions Outlook Acknowledgements

Supplementary – MCTDHB: Equations of Motion.

 Equations of Motion (EOM): Coupled — Non-linear — Integro-Differential.

 $M \quad \text{Orbitals:} \qquad i\partial_t |\phi_j\rangle = \hat{\mathbf{P}} \left[\hat{h} |\phi_j\rangle + \sum_{k,s,q,l=1}^M \{\rho(t)\}_{jk}^{-1} \rho_{ksql} \hat{W}_{sl} |\phi_q\rangle \right]$ $\binom{N+M-1}{N} \quad \text{Coefficients:} \qquad i\partial_t C_{\vec{n}}(t) = \sum_{\vec{n'}} \langle \vec{n}; t | \hat{H} | \vec{n'}; t \rangle C_{\vec{n'}}$

 MCTDHB package: Solve the EOM, efficiently. Use Adams-Bashforth-Moulton (ABM) for Orbital EOM (recently: also BS,RK,ZVODE). Use Short Iterative Lanczos (SIL) for Coefficients' EOM.

Conclusions Outlook Acknowledgements

Supplementary – The current MCTDHB integration scheme

- SIL Propagate $C(0) \mapsto C(\frac{\tau}{2})$ using $h_{kq}(0), W_{kqsl}(0)$, obtain $\rho_{kq}(\frac{\tau}{2}), \rho_{kqsl}(\frac{\tau}{2});$
- ABM/RK/ZVODE Propagate $\Phi(0) \mapsto \Phi(\frac{\tau}{2})$ using $\rho_{kq}(\frac{\tau}{2}), \rho_{kqsl}(\frac{\tau}{2})$.
- ABM/RK/ZVODE Propagate $\Phi(0) \mapsto \Phi'(\frac{\tau}{2})$ using $\rho_{kq}(0), \rho_{kqsl}(0)$, obtain error estimate.
- ABM/RK/ZVODE Propagate $\Phi(\frac{\tau}{2}) \mapsto \Phi(\tau)$ using $\rho_{kq}(\frac{\tau}{2}), \rho_{kqsl}(\frac{\tau}{2})$, obtain $h_{kq}(\tau), W_{ksql}(\tau)$ using $\Phi(\tau)$.
 - SIL Propagate $C(\frac{\tau}{2}) \mapsto C(\tau)$ using $h_{kq}(\tau), W_{kqsl}(\tau)$, obtain $\rho_{kq}(\tau), \rho_{kqsl}(\tau)$.
 - SIL Backwards Propagate $C(\frac{\tau}{2}) \mapsto C'(0)$ using $h_{kq}(\tau), W_{kqsl}(\tau)$ obtain error estimate.

伺 とう きょう く きょうしょう

Conclusions Outlook Acknowledgements

Supplementary - MCTDHB method: Reduced Density Matrices

• The one-body reduced density Matrix (RDM):

$$\begin{aligned}
\rho(x_1|x_1';t) &= \langle \Psi | \hat{\Psi}^{\dagger}(x_1') \hat{\Psi}(x_1) | \Psi \rangle \\
&= N \int \Psi^*(x_1', x_2, ..., x_N) \Psi(x_1, ..., x_N) dx_2 \cdots dx_N \\
&= \sum_{a,b} \rho_{ab}(t) \phi_a^*(x_1') \phi_b(x_1)
\end{aligned}$$

• The two-body RDM:

$$\rho(x_1, x_2 | x'_1, x'_2; t) = \langle \Psi | \hat{\Psi}^{\dagger}(x'_1) \hat{\Psi}^{\dagger}(x'_2) \hat{\Psi}(x_1) \hat{\Psi}(x_2) | \Psi \rangle \\
= N(N-1) \int \Psi^*(x'_1, x'_2, x_3, ..., x_N) dx_3 \cdots dx_N \\
= \sum_{a,b,c,d} \rho_{abcd} \phi^*_a(x'_1) \phi^*_b(x'_2) \phi_c(x_1) \phi_d(x_2) \\
= \sum_{a,b,c,d} P_{abcd} \phi^*_a(x'_1) \phi^*_b(x'_2) \phi_c(x_1) \phi^*_b(x'_2) \phi^*_b(x$$

Conclusions Outlook Acknowledgements

Supplementary - Normalized Correlation Functions

• The first order correlation function:

$$g^{(1)}(x_1|x_1';t) = \frac{\rho^{(1)}(x_1|x_1')}{\sqrt{\rho^{(1)}(x_1|x_1)\rho^{(1)}(x_1'|x_1')}}$$

• The p-th order correlation function:

$$g^{(\rho)}(x_1,...,x_{\rho}|x'_1,...,x_{\rho};t) = \frac{\rho^{(\rho)}(x_1,...,x_{\rho}|x'_1,...,x_{\rho})}{\sqrt{\prod_{\mu=1}^{\rho}\rho^{(1)}(x_{\mu}|x_{\mu})\rho^{(1)}(x'_{\mu}|x'_{\mu})}}$$

(日) (同) (三) (三)

Conclusions Outlook Acknowledgements

Supplementary – MCTDH vs MCTDHB

• Numerical effort for N bosons and M orbitals:

	MCTDH	MCTDHB
Configurations	(M^N)	$\left(\begin{array}{c}M+N-1\\N\end{array}\right)$
N = 4, M = 10	104	715
N=5, M=10	10 ⁵	2002
N = 25, M = 6	$> 10^{19}$	142506
N = 100, M = 5	$> 10^{69}$	4598126

System consists of

- *few* bosons ⇒ symmetrization of **MCTDH** algorithm
- many bosons \Rightarrow exploit symmetry by using the **MCTDHB**⁶

Conclusions Outlook Acknowledgements

Supplementary – MCTDHB package: Key Developments

- Huge grids necessary: Fast Fourier transform (FFT) collocation to circumvent expensive DVR-matrix-vector operations.
- Analysis tools: Sampling and FFT methods.
- Efficiency: Parallelization of integrators, hybridly and problem-size adapted parallel evaluation of the right-hand sides of the EOM.

- 4 同 2 4 日 2 4 日 2

Conclusions Outlook Acknowledgements

Supplementary – The Problem Size Adaptive Hybrid Parallelization

Tunneling Dynamics with MCTDHB

Conclusions Outlook Acknowledgements

Supplementary – MCTDH(B) package: Software Development

Four golden rules:

- COORDINATION: Version management Subversion (svn), Mercurial (Hg) or Git.
- BIG STEPS WITH SMALL TESTS: Scientific software's development is best done *test-driven*: Implement a test suite (i.e. automated tests for consistency after building for instant feedback).
- CODE VISUALIZATION FOR OPTIMIZATIONS: Use performance analysis software (Scalasca, Tau, Periscope [all free]) for code visualization.
- OCUMENTATION: Use doxygen for automatic (online) user manual and code description.

Conclusions Outlook Acknowledgements

Supplementary – Example: Typical Problem Sizes

- Number of particles: $N \sim 2, ..., \sim 10^7$.
- Number of gridpoints/basis functions: $n_g = 2, ..., 2^{21}$
- Spatial dimensionality: D = 1, 2, 3
- Demonstration with

 $D = 2; n_g = 2^{16} = 64k; N = 101; M = 4; n_{conf} = 182104.$ Computation time ~ hours, ~ 100s CPU hours. Primitive grid size for this example: $2^{16 \cdot 101} = 2^{1616} = 2.914 \cdot 10^{486}(!!!)$

・ロト ・四ト ・ヨト ・

Conclusions Outlook Acknowledgements

Supplementary – Some History: TDGP

The GP ansatz for the wavefunction:

$$|\Psi
angle = |N;t
angle = rac{1}{\sqrt{N!}}\prod_{i=1}^N \Phi(x_i,t)$$

Time-Dependent Variational Principle (TDVP):

$$\frac{\delta \mathcal{S}[\Phi(x,t)]}{\delta \Phi^*(x,t)} \stackrel{!}{=} 0 = \frac{\int dt \left(\langle \delta \Psi | \hat{H} - i \partial_t | \Psi \rangle - \mu(t) \left[\langle \Phi | \Phi \rangle - 1 \right] \right)}{\delta \Phi^*(x,t)}$$

The equation of motion / the TDGP:

$$i\dot{\Phi}(x,t) = \left[\hat{h} + \lambda_0(N-1)|\Phi(x,t)|^2\right]\Phi(x,t)$$

Conclusions Outlook Acknowledgements

Supplementary – Some more recent History: BMF/TDMF

The TDMF ansatz for the wavefunction:

$$|\Psi\rangle = |n_1, n_2, \dots, n_M; t\rangle = \hat{S} \left[\prod_{i=1}^{n_1} \Phi_1(x_i, t) \cdots \prod_{i=N-n_M+1}^{n_M} \Phi_M(x_i, t)\right]$$

TDVP:

$$\frac{\delta S[\{\Phi_i(x,t)\}]}{\delta \Phi_q^*(x,t)} \stackrel{!}{=} 0 = \frac{\int dt \left(\langle \delta \Psi | \hat{H} - i \partial_t | \Psi \rangle - \sum_{kj} \mu_{kj}(t) \left[\langle \Phi_k | \Phi_j \rangle - \delta_{kj}^M \right] \right)}{\delta \Phi_q^*(x,t)}$$

The M equations of motion:

$$i|\dot{\Phi}_{k}\rangle = \hat{\mathbf{P}}\left[\hat{h} + \lambda_{0}(n_{k}-1)|\Phi_{k}|^{2}\sum_{l\neq k}^{M} 2\lambda_{0}n_{l}|\Phi_{l}|^{2}\right]|\Phi_{k}\rangle$$

$$\hat{\mathbf{P}} = 1 \sum_{l=1}^{M} |\Phi_{l}\rangle/\Phi_{l}$$
Tunneling Dynamics with MCTDHB

Conclusions Outlook Acknowledgements

Supplementary – Orbital EOM in Detail

$$i\partial_{t} \underbrace{|\phi_{j}\rangle}_{\text{ABM}} = \hat{\mathbf{P}} \left[\underbrace{\hat{h}|\phi_{j}\rangle}_{\mathcal{O}(n_{g}\log n_{g})} + \underbrace{\sum_{k,s,q,l=1}^{M} \{\rho(t)\}_{jk}^{-1} \rho_{ksql} \hat{W}_{sl} |\phi_{q}\rangle}_{\mathcal{O}(M^{4});\#\{k,s,q,l\} + \mathcal{O}(M^{2})\hat{W}_{sl} - \text{integrals}} \right]$$

$$\hat{W}_{sl}(x) = \int \phi_{s}^{*}(x') \hat{W}(x - x') \phi_{l}(x') dx'$$

- A problem-size-adaptive hybrid parallelization.
- OpenMP-parallelized ABM.

(日) (同) (三) (三)

Conclusions Outlook Acknowledgements

Supplementary – Coefficients' EOM in Detail

$$\underbrace{i\partial_t C_{\vec{n}}(t)}_{\text{SIL}} = \underbrace{\sum_{\vec{n'}} \langle \vec{n}; t | \hat{H} | \vec{n'}; t \rangle C_{\vec{n'}}}_{\binom{N+M-1}{N}}$$

- SIL is a Krylov-Method \Rightarrow Needs $\{\hat{H}|\Psi\rangle, \hat{H}^2|\Psi\rangle, ..., \hat{H}^K|\Psi\rangle\}.$
- An efficient mapping/re-addressing⁷ scheme allowed to hybridly parallelize the evaluation of \hat{H} and its powers.

⁷A. I. Streltsov, O. E. Alon, and L. S. Cederbaum, Phys. Rev. A 81, 022124 (201⊕) → < ≡ → < ≡ → = → ○ < ↔