Hard-core bosons on a triangular lattice with long range interaction with finite temperature

Michał Maik ^{1,2}, Philipp Hauke ², Omjyoti Dutta ², Jakub Zakrzewski ^{1,3} and Maciej Lewenstein ^{2,4}

¹Instytut Fizyki imienia Mariana Smoluchowskiego, Uniwersytet Jagielloński ²ICFO – Institut de Ciències Fotòniques, Mediterranean Technology Park ³Mark Kac Complex Systems Research Center, Uniwersytet Jagielloński ⁴ICREA – Instituciò Catalana de Recerca i Estudis Avançats

September 17, 2012

Outline

Introduction Spin systems Spin Wave Theory Quantum Monte Carlo Results

- Quantum Simulators
- Trapped lons
- 2 Spin systems
 - 1D system
 - 2D system
- Spin Wave Theory
- Quantum Monte Carlo
- 5 Results
 - Wigner Crystals
 - Temperature Dependance

3

Quantum Simulators Trapped Ions

Quantum Simulators

Why do we need to have quantum simulators?

э

(日) (同) (三) (三)

Quantum Simulators Trapped Ions

Quantum Simulators

Why do we need to have quantum simulators?

- Simulating quantum mechanical systems is very difficult.
- Number of parameters that describe a quantum state grow exponentially with the number of particles. $(2^n \text{ for } n \text{ spin } 1/2 \text{ particles.})$
- A way to solve this is to create a highly controlable system that efficiently simulates our system.

- 4 同 2 4 日 2 4 日 2

Quantum Simulators Trapped Ions

Trapped lons

Concept

Effective Quantum Spin Systems with Trapped Ions D. Porras and J. Cirac, *Phys. Rev. Lett.* **92**, 207901 (2004)

Proof-of-principle experiments

Simulating a quantum magnet with trapped ions A. Friedenauer *et al.*, *Nat. Phys.* **4**, 757 (2008)

Quantum simulation of frustrated Ising spins with trapped ions K. Kim *et al.*, *Nature* **465**, 590 (2010)

< ロ > < 同 > < 回 > < 回 >

1D system 2D system

1D Spin Chain

Complete devil's staircase and crystal-superfluid transitions in a dipolar XXZ spin chain: a trapped ion quantum simulation

P. Hauke et al., New Journal of Physics 12, 113037 (2010)

$$H = J \sum_{i,j} \frac{1}{|i-j|^3} [\cos \theta (S_i^z S_j^z) + \sin \theta (S_i^x S_j^x + S_i^y S_j^y)] - \mu \sum_{i,j} S_i^z$$

1D system 2D system

Magnetization

Magnetic lobes of 1D spin chain

Solved using Density Method Renormalization Group (DMRG)

- 60 site spin chain
- Long ranged interactions
- *T* = 0
- Open Boundary Conditions.

Image: A image: A

1D system 2D system

Devil's staircase

- $\theta = 0$
- Corresponds to the Ising model
- Creates a generalized Wigner crystal

▲ 同 ▶ → 三 ▶

Spin Systems Spin Wave Theory Quantum Monte Carlo Results

1D system 2D system

The 2D model:

<ロ> <同> <同> < 同> < 同>

æ

1D system 2D system

The 2D model:

- 6x6 triangular lattice with periodic boundary conditions.
- Long ranged spin-spin interactions (both hopping and dipolar)
- Ultra-frustrated

▲ 同 ▶ → 三 ▶

1D system 2D system

Frustration

- Prevents simultaneous minimization of interaction energies
- Creates degeneracies and a multitude of meta stable states

- NN model has 6 interactions
- LR model has 36 interactions

- ● ● ●

Holstein-Primakoff bosons

We start with our XXZ Spin Hamiltonian

$$H = J \sum_{i,j} \frac{1}{|i-j|^3} [\cos \theta (S_i^z S_j^z) + \sin \theta (S_i^x S_j^x + S_i^y S_j^y)] - \mu \sum_i S_i^z$$

Now we will use Holstein-Primakoff transformations in order to redefine our spins

$$S^{-} = (\sqrt{2S - n})a, \ S^{+} = a^{\dagger}(\sqrt{2S - n}), \ S^{z} = n - S$$

where $n = a^{\dagger}a$ and $[a, a^{\dagger}] = 1$ and S is the total spin and the spins continue to obey their commutation relationships

$$[S^{\alpha}, S^{\beta}] = \imath \epsilon^{\alpha\beta\gamma} S^{\gamma}$$

Approximation

Let's take a look at the square root term.

$$\sqrt{2S-n} = \sqrt{2S} \left(1 - \frac{n}{2S}\right)^{1/2}$$

Now let's expand the using Taylor series expansion

$$\sqrt{1-x} = \sum_{n=0}^{\infty} \frac{(-1)^n (2n)!}{(1-2n)(n!)^2 (4^n)} x^n = 1 + \frac{x}{2} - \frac{x^2}{8} + \dots$$

So

$$\sqrt{2S-n} = \sqrt{2S} \left(1 - \frac{n}{4S} - \frac{n^2}{32S^2} - \dots \right)$$

Now we choose our spin to be $S = \frac{1}{2}$, then

$$S^{-} = a, S^{+} = a^{\dagger}, S^{z} = n - \frac{1}{2}$$

A 10

< ∃ → <

Let's now apply the transformations to the Hamiltonian

$$S_i^-
ightarrow a_i, S_i^+
ightarrow a_i^\dagger, S_i^z
ightarrow n - rac{1}{2}$$

The new Hamiltonian now becomes:

$$H = J \sum_{i,j} \frac{1}{|i-j|^3} \left[\cos \theta \left(n_i n_j - \frac{n_i}{2} - \frac{n_j}{2} + \frac{1}{4} \right) \right]$$

+
$$J \sum_{i,j} \frac{1}{|i-j|^3} \left[\frac{\sin \theta}{2} \left(a_i^{\dagger} a_j + a_j^{\dagger} a_i \right) \right]$$

-
$$\mu \sum_i \left(n_i - \frac{1}{2} \right)$$

3

The simulation

- All simulations were run using the worm algorithm of the open source ALPS (Algorithms and Libraries for Physics Simulations) project.
- This algorithm, first created by N. Prokof'ev, works by sampling world lines in the path integral representation of the partition function in the grand canonical ensemble.
- Calulations are run in low but finite temperature.
- We are restricted to only studying negative θ due to the sign problem.
- The sign problem occurs when the hopping term is negative because negative probabilities arise in the partion function.

・ロト ・同ト ・ヨト ・ヨト

Wigner Crystals Temperature Dependance

Finite Temperature Devil's Staircase

Wigner crystal

- $\theta = 0$
- *T* = 0.1
- 2/3 filling has largest plataeu.

Spin Wave Theory Quantum Monte Carlo Results

Wigner Crystals

Density and Superfluidity

θ

 $\tilde{0}^0$

Maik et al. Hard-core bosons on a triangular lattice

 $\tilde{0}^0$

θ

 0^{0}_{-}

Wigner Crystals Temperature Dependance

Supersolids

In order to properly investigate the existance of a supersolid we look at the two values:

Structure factor

$$S(\mathbf{Q}) = \left\langle \left| \sum_{i=1}^{N} n_i e^{i \mathbf{Q} \mathbf{r}_i} \right|^2 \right\rangle / N^2$$

where the wave vector is $\mathbf{Q} = (4\pi/3, 0)$ Superfluid fraction

$$\rho_{s} = \frac{\langle W^2 \rangle}{4\beta}$$

where W is the winding number fluctuation of world lines and β is the inverse temperature.

Wigner Crystals Temperature Dependance

Superfluid fraction and structure factor graphs taken at $\mu/J = 0$ for multiple system sizes (L = 6, 9 and 12). Lines get thicker and darker with system size increase.

Wigner Crystals Temperature Dependance

Superfluid fraction and structure factor graphs taken at $\theta = -0.15$ for multiple system sizes (L = 6, 9 and 12). Lines get thicker and darker with system size increase.

▲ 同 ▶ → ● 三

Wigner Crystals Temperature Dependance

Superfluid fraction and structure factor graphs taken at 80% of the lobe ($\theta = -0.28, \theta = -0.23, \theta = -0.15$) for multiple system sizes (L = 6, 9 and 12). Lines get thicker and darker with system size increase.

- 4 同 6 4 日 6 4 日 6

Wigner Crystals Temperature Dependance

Melting of crystal lobe

Wigner Crystals Temperature Dependance

Temperature Scaling

Superfluid density and structure factor (short ranged interactions)

Melting of supersolid region

Wigner Crystals Temperature Dependance

Temperature Scaling

Superfluid density and structure factor (long ranged interactions)

Melting of supersolid region

Wigner Crystals Temperature Dependance

Temperature Scaling

Superfluid density and structure factor (LR dipolar interactions)

Melting of supersolid region

Wigner Crystals Temperature Dependance

Temperature Scaling

Long ranged dipolar interactions

Wigner Crystals Temperature Dependance

Conclusions

- lons are a good choice for quantum simulators because of the precise control over the experimental parameters.
- Long ranged interactions reduce the size of the 2/3 filling crystal lobe.
- Long ranged interactions stabilize the supersolid region but due to increased interactions this region melts more quickly with increased temperature.

▲□ ► < □ ► </p>

Wigner Crystals Temperature Dependance

Further Reading

Quantum spin models with long-range interactions and tunnelings: A quantum Monte Carlo study.

M. Maik, P. Hauke, O. Dutta, J. Zakrzewski and M. Lewenstein, arXiv:1206.1752 (2012)

- 4 同 6 4 日 6 4 日 6