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Quantum Simulators

Why do we need to have quantum simulators?
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Quantum Simulators
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Quantum Simulators

Why do we need to have quantum simulators?
@ Simulating quantum mechanical systems is very difficult.

@ Number of parameters that describe a quantum state grow
exponentially with the number of particles. (2" for n spin 1/2
particles.)

@ A way to solve this is to create a highly controlable system
that efficiently simulates our system.

Maik et al. Hard-core bosons on a triangular lattice



Introduction
Quantum Simulators
Trapped lons

Trapped lons

Concept

Effective Quantum Spin Systems with Trapped lons
D. Porras and J. Cirac, Phys. Rev. Lett. 92, 207901 (2004)

Proof-of-principle experiments

Simulating a quantum magnet with trapped ions
A. Friedenauer et al., Nat. Phys. 4, 757 (2008)

Quantum simulation of frustrated Ising spins with trapped ions
K. Kim et al., Nature 465, 590 (2010)
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Spin systems 1D system
2D system

1D Spin Chain

Complete devil’s staircase and crystal-superfluid transitions in a
dipolar XXZ spin chain: a trapped ion quantum simulation

P. Hauke et al., New Journal of Physics 12, 113037 (2010)
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Spin systems 1D system
2D system

Magnetization

Magnetic lobes of 1D spin chain

<Z>/N
- Solved using Density Method

Renormalization Group (DMRG)
@ 60 site spin chain
@ Long ranged interactions
e 7T=0
@ Open Boundary Conditions.
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Spin systems 1D system
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Spin systems 1D system

2D system

The 2D model:
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Spin systems 1D system

2D system

The 2D model:

@ 6x6 triangular lattice with periodic boundary conditions.
e Long ranged spin-spin interactions (both hopping and dipolar)
@ Ultra-frustrated
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Spin systems 1D system
2D system

Frustration

@ Prevents simultaneous

oL . ) : @ NN model has 6 interactions
minimization of interaction energies

o Creates degeneracies and a @ LR model has 36 interactions
multitude of meta stable states
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Spin Wave Theory

Holstein-Primakoff bosons

We start with our XXZ Spin Hamiltonian

H= JZ‘ |3[c050552)+5|n9(5X5X Sysy]—uZSZ

Now we will use Holstein-Primakoff transformations in order to
redefine our spins

~=(v25—-n)a, ST =a'(vV25—-n),S?=n-S

where n = afa and [a,a’] = 1 and S is the total spin and the spins
continue to obey their commutation relationships

[S%, §P] = 1P 57



Spin Wave Theory

Approximation

Let's take a look at the square root term.

1/2
V25— n=+2S (“g)
Now let's expand the using Taylor series expansion

m—z D@ g x
n)(n!)(4m) 2 8

m—r( _45_3;’;_...)

Now we choose our spin to be S = 5, then
ST =aSt =45 = n—%
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Spin Wave Theory

Let's now apply the transformations to the Hamiltonian

S —>a,,5+—>aT 57— n—%

The new Hamiltonian now becomes:
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Quantum Monte Carlo

The simulation

@ All simulations were run using the worm algorithm of the open
source ALPS (Algorithms and Libraries for Physics
Simulations) project.

@ This algorithm, first created by N. Prokof'ev, works by
sampling world lines in the path integral representation of the
partition function in the grand canonical ensemble.

@ Calulations are run in low but finite temperature.

@ We are restricted to only studying negative 6 due to the sign
problem.

@ The sign problem occurs when the hopping term is negative
because negative probabilities arise in the partion function.
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Wigner Crystals

Temperature Dependance

Results

Finite Temperature Devil's Staircase
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Wigner Crystals
Temperature Dependance

Results

Density and Superfluidity

Short Ranged Long Ranged Dipole  Long Ranged All
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Wigner Crystals
Temperature Dependance

Results

Supersolids

In order to properly investigate the existance of a supersolid we
look at the two values:
Structure factor

N 2

where the wave vector is Q = (47/3,0)
Superfluid fraction
W2
Ps = < >
46
where W is the winding number fluctuation of world lines and 3 is
the inverse temperature.
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Results

Wigner Crystals

Temperature Dependance
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Superfluid fraction and structure factor graphs taken at u/J =0
for multiple system sizes (L = 6, 9 and 12). Lines get thicker and
darker with system size increase.
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Wigner Crystals

Temperature Dependance

Results

S(Q), ps

Superfluid fraction and structure factor graphs taken at § = —0.15
for multiple system sizes (L = 6, 9 and 12). Lines get thicker and
darker with system size increase.
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Results
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Superfluid fraction and structure factor graphs taken at 80% of
the lobe (§ = —0.28,0 = —0.23,0 = —0.15) for multiple system

sizes (L = 6, 9 and 12). Lines get thicker and darker with system
size increase.
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Temperature Dependance

Results

Melting of crystal lobe
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Results

Temperature Scaling

Superfluid density and structure factor (short ranged interactions)

0.3

- 1 1 B
0.05, 0.05,

Melting of supersolid region

0.004

5 3
> 1 BI

Maik et al. Hard-core bosons on a triangular lattice



Wigner Crystals
Temperature Dependance

Results

Temperature Scaling
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Results

Temperature Scaling

Superfluid density and structure factor (LR dipolar interactions)
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Results

Temperature Scaling
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Wigner Crystals

Temperature Dependance

Results

Conclusions
@ lons are a good choice for quantum simulators because of the
precise control over the experimental parameters.
@ Long ranged interactions reduce the size of the 2/3 filling
crystal lobe.

@ Long ranged interactions stabilize the supersolid region but
due to increased interactions this region melts more quickly
with increased temperature.
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Results

Further Reading

Quantum spin models with long-range interactions and
tunnelings: A quantum Monte Carlo study.

M. Maik, P. Hauke, O. Dutta, J. Zakrzewski and M. Lewenstein,
arXiv:1206.1752 (2012)
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