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GENERAL CONTEXT
The physical system:

e Fermionic atoms with two internal states T, |

e Short-range interactions between T and | controlled by
a magnetic Feshbach resonance

e Arbitrary values for the numbers Ny, V|

e Intense experimental studies (Thomas, Salomon, Jin,
Ketterle, Grimm, Hulet, Zwierlein...), e.g. BEC-BCS
crossover (Leggett, Nozieres, Schmitt-Rink, Sa de Melo,...)

What is not discussed here:

e The actual many-body state of the system: superfluid
or normal

e The particularly intriguing strongly polarized case Ny >
N|: Polaronic physics, see talk by C. Trefzger



OUTLINE OF THE TALK
¢ What is the unitary gas ?

e Simple consequences of scaling invariance

e Dynamical consequences: SO(2,1) hidden symmetry in
a trap

e Separability in hyperspherical coordinates
e Does the unitary gas exist 7

e First deviations from unitary limit



WHAT IS THE UNITARY GAS ?



DEFINITION OF THE UNITARY GAS

e Opposite spin two-body scattering amplitude
1
= —— Vk
Tk o
e “Maximally” interacting: Unitarity of S matrix imposes

| fr] < 1/k.

e In real experiments with magnetic Feshbach resonance:

11 1
7 =3 + ik — 5/@27«6 + O(k*b?)
k

unitary if “infinite” scattering length a and “zero” ranges:

1
ktypla| > 100, ktyp|Te| and kiypb < 100

imposing |a| > 10 microns for re ~ b ~ a few nm.

e All these two-body conditions are only necessary.



THE ZERO-RANGE WIGNER-BETHE-PEIERLS MODEL

e Interactions are replaced by contact conditions.

e For r;; — 0 with fixed ¢j-centroid éij = (75 + 75)/2
different from 7, k # 1, j:

1 ~

PY(T1ye ey TN) = (r ) A;ilCiis (TR ki 5] + O(Ti5)
(¥

e Elsewhere, non interacting Schrodinger equation

S h? 1 S
Ep(X) = |—Ap 4+ -mw?X?| (X
$(X) = |~ Ayt $(X)
with X = (15 s TN)-
e Odd exchange symmetry of 9 for same-spin fermion po-

sitions.

e Unitary gas exists iff Hamiltonian is self-adjoint.



SIMPLE CONSEQUENCES OF SCALING INVARIANCE



SCALING INVARIANCE OF CONTACT CONDITIONS

Y(X) =

¥

(¥

1 =~ —
= 7Aij[cz’j3 ("k)k=£i,5] + O(7i5)

e Domain of Hamiltonian is scaling invariant: If 1) obeys
the contact conditions, so does 1) with

¥A(K) = B/

e Consequences (also true for the ideal gas):

free space

box (periodic b.c.)

harm. trap

no bound state(*)

PV =2E/3 (*%)

virial E = 2Fp4vm

(%)

() If 4 of eigenenergy E, 1 of eigenenergy E /A%. Square integrable eigenfunctions

(after center of mass removal) correspond to point-like spectrum, for selfadjoint H.

) E(N,VA3,8) = E(N,V,S)/A2, then take derivative in A = 1. ***) For eigenstate

1, mean energy of 1, stationary in A\ = 1.




TEST FOR QUANTUM MONTE CARLO
For the unpolarized gas in thermodynamic limit, using
Carlson’s 2009 upper bound on the ground state energy

£ = (T =0)/Ep < 0,41]:
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DYNAMICAL CONSEQUENCES:
SO(2,1) HIDDEN SYMMETRY IN A TRAP



IN A TIME-DEPENDENT TRAP

e At t = 0 : static trap U(r) = mw?r?/2, system in eigen-
state 1¥g(X) of energy FE.

e For t > 0, arbitrary time dependence of trap spring
constant, w(t). Known solution for ideal gas:
o—i0(t)

exp |2 x2| 40X /AH))

A3N/2(¢) 21\
with A = w2X73 — W2(H)A and 6 = EA—2 /h.

e This is a gauge plus scaling transform.

¢(Xat) —

e The gauge transform also preserves contact conditions:

t)
so solution also applies to unitary gas!

1
'rz-z—l—'r 2C’2—|—22



IN THE MACROSCOPIC LIMIT

—zH(t)

X B _im).\X2

2 Po(X /)

density p(¥,t) = po(¥/X) /A3 Veloaty ﬁeld (7, t) = FA/A

local temp. T'(7,t) = T/A* pressure P(7,t) = Py(¥/\)/\°

local entropy per particle s(r7,t) = sg(7/\)

This has to solve the hydrodynamic equations for a normal
gas. Entropy production equation:

pkpT (8ss + T - 63) =V - (kVT) + ¢(V - 7)?

ov; : 2 ~ 2
2: 7 -
_I_ ( z — géz]V . ’U)

so the bulk VlSCOSlty is zero: ((p,T) = 0 VT > T,.. Repro-
duces the conformal invariance result of Son (2007).




LADDER STRUCTURE OF THE SPECTRUM
e Infinitesimal change of w for 0 <t < ts. For t > ty:
)\(t) 1= ¢ e—2iwt + e* eint + 0(62)
so an udamped mode of frequency 2w.

e Corresponding wavefunction change:
¢(Xat) _ [e—z’Et/h B Ee—i(E—l—Qhw)t/hL_'_

_I_e*e—i(E—2hw)t/hL_} 1#0()2) + 0(62)
e Raising and lowering operators:

3N . H )
= 2 ——zX-(‘?X» + — —mwX*/h

21 hw
(in red, generator of scaling transform)

e Spectrum=—collection of semi-infinite ladders of step 2hw.
S0O(2,1) hidden symmetry (Pitaevskii, Rosch, 1997).



LADDER STRUCTURE OF THE SPECTRUM (2)

N Eg+8’hoo
2hw

¥ Eg+6hoo
2hw

¥ Eg+4hoo
2hw

¥ Eg+2’hoo
2hw

. E
g



USEFUL MAPPING AND SEPARABILITY

e Each energy ladder has a ground step of energy Eg,
eigenfunction g.

e Integration of L_1g = 0 gives, with X = Xii:
~ 2
’ng(X) _ e—mwX /2h < XEQ/(h“’)_?’N/zf(ﬁ)
e Limit w — 0 : mapping to zero energy free space solu-

tions. N.B.: E4/(hw) is a constant.

e Free space problem solved for N = 3 (Efimov, 1972)...
so trapped case also solved (Werner, Castin, 2006).

e Also, this is separable in hyperspherical coordinates.



SEPARABILITY IN HYPERSPHERICAL COORDINATES



SEPARABILITY IN INTERNAL COORDINATES

e Use Jacobi coordinates to separate center of mass C

e Hyperspherical coordinates:
(T1y...,7N) « (C, R, Q)
with 3IN — 4 hyperangles Q and the hyperradius

N
=) (7 —C)?
i=1

e Hamiltonian is clearly separable:

h? 3N — 4 N 1 5
Hinternal — _2m aR + R 8R+ R2 Q "I'Emw R




Do the contact conditions preserve separability ?
e For free space EE = 0, yes, due to scaling invariance:
¢E 0 RS (3N 5)/2 (Q)
E = 0 Schrodinger’s equatlon implies

Ago(@) = - |2 = (25 5) 5(S)

with contact conditions. s? € discrete real set.

e For arbitrary F, Ansatz with £ =0 hyperrangular part
obeys contact conditions [R? = Rz(rz] =0) + O(’rz])]

¢ = F(R)R~BN=5)/2¢(()

e Schrodinger’s equation for a fictitious particle in 2D:

2 2.2
EF(R ——h—AZDFR h”s 1 W2R?| F(R
(R) = S AR (R) + 2mR2+ (R)




SOLUTION OF HYPERRADIAL EQUATION (N > 3)

2 [ 12 2 i
EF(R) — — " A2PF(R e LR F(R
(R) = 2m 1t (R) + 2mR2+2mw (R)

¢ Which boundary condition for F(R) in R = 0?7 Wigner-
Bethe-Peierls does not say.

e Key point: particular solutions F(R) ~ RS for R — 0.

e Case s® > 0: Defining s > 0, one discards as usual the
divergent solution:

F(R) o R° — Eq = Ecom+ (s + 1+ 2q)hw, q €N

e Case s? < 0: To make the Hamiltonian self-adjoint, one
is forced to introduce an extra parameter « (inverse of a



length, calculable via microscopic model). For s = i|s|:

F(R) ~ (KR)*— (kR)™*

e This breaks scaling invariance of the domain. In free
space, a geometric spectrum of N-mers:

il k2
m
For N = 3, this is the Efimov effect:

e Efimov (1971): Solution for three bosons (1/a = 0).
There exists a single purely imaginary s3 ~ 72 X 1.00624.

E, o< — e—2m/lsl ez

e Efimov (1973): Solution for three arbitrary particles
(1/a = 0). Efimov trimers for two fermions (masse m,
same spin state) and one impurity (masse m’) iff (Petrov,
2003)

m
a=— > ae(2;1) ~ 13.6069
m/



DOES THE UNITARY GAS EXIST ?



MINLOS’S THEOREM (1995)

Theorem: In the n + 1 fermionic problem, the Wigner-
Bethe-Peierls Hamiltonian 1s self-adjoint and bounded from

below iff

20(1 4+ 1/a)3 rasinily
(n — 22Ut /o) / T dttsint < 1.
wv/1+ 2 Jo

e o is mass ratio fermion/impurity

e Case a = 1: No stable unitary gas for n > 9...
e Proof not included in Minlos’ paper.

e Proof by Teta, Finco (2010) has a hole.

e A physical test: look for occurrence of s? < 0 for n = 3:
four-body Efimov effect !?



ARE THERE EFIMOVIAN TETRAMERS ?

2,.2
E?(;l) o _h K’4€—27T’n/|84| 2

m
Negative results for bosons:

¢ Amado, Greenwood (1973): “There is No Efimov ef-
fect for Four or More Particles”. Explanation: Case of
bosons, there exist trimers, tetramers decay.

¢ Hammer, Platter (2007), von Stecher, D’Incao, Greene
(2009), Deltuva (2010): The four-boson problem (here
1/a = 0) depends only on k3, no k4 to add.

e Key point: N = 3 Efimov effect breaks separability in
hyperspherical coordinates for N = 4.

Here, we are dealing with fermions.



OUR DEFINITION OF N-BODY EFIMOV EFFECT

e To find N-body Efimov effect, one simply needs to cal-
culate the exponents spn;, that is to solve the Wigner-
Bethe-Peierls model at zero energy:

YE=0(F1, ..., 7n) = R*NTOBN=9/2¢(q)
e The IN-body Efimov effect takes place iff one of the S%V
is < 0.

e This statement makes sense if AQ» self-adjoint for the
Wigner-Bethe-Peierls contact conditions: There should
be no n-body Efimov effect Vn < IN — 1.



THE 3 +1 FERMIONIC PROBLEM
(Castin, Mora, Pricoupenko, 2010)

e Three fermions (mass m, same spin state) and one im-
purity (mass m/’)

e Our def. of 4-body Efimov effect requires a mass ratio

™m
= — < 0e(2;1) ~ 13.6069
m

e Calculate EF = 0 solution in momentum space. An inte-
gral equation for Fourier transform of A;;:

/ d3k3 D(Ela E3) -+ D(E?n E2)
2w2k2+k2—|—k2+10‘ (k1 - k2 + k1 - k3 + k2 - k3)

e D has to obey fermionic symmetry.



RESULTS

e Four-body Efimov effect obtained for a single s4, in chan-
nel [ = 1 with even parity:

El X EQ
[|k1 X k2|
in the interval of mass ratio

ac(3;1) ~13.384 < a < ae(2;1) ~ 13.607

D(Fy, k) = & - fo! (K1, k2, 0)

e Strong disagreement with Minlos’ critical mass ratio for
n = 3, aMnlos ~ 529

e In experiments: Use optical lattice to tune effective mass
of 99K and 3He* away from a ~ 13.25
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FIRST DEVIATIONS FROM UNITARITY



FINITE 1/a AND FINITE RANGE CORRECTIONS
General relations for the zero-range model:

e Tan relation (generalizing a Lieb relation to 3D):

dE A
d(—l/a) 4mm 1145

e The zero-range solution also contams in itself informa-
tion on finite range corrections (Werner, Castin, 2012):

2
p. .
=27 » (A ( — T:Z) [ Aij)
' T35T ] —>C

An experimentally more accessible form:

e Pair distribution function at short distances:
m dE (1 1) 2 dE
4wh? |d(—1/a) dre

+ O(r)

gy (7) =

a



WITHIN A SO(2,1) LADDER

¢ Reminder of ladder structure:
Eq = Ecom + (s +1+2q)iw, ¢q€N
e N-body problem unsolved: dE/dr. unknown

e Separability in hyperspherical coordinates leads to ex-
plicit expressions (in terms of s and q) for

dEg/dre i dE,;/d(1/a)
dEqg/dre dEg/d(1/a)

e See pioneering work of Moroz (2012).

Large IN, unpolarized case:

e Corrections to Eq4 linear in q: change of breathing fre-
quency 2w. Agrees with superfluid hydrodynamics (Bul-
gac, Bertsch)



e Corrections to E4 quadratic in g: collapse (zero-temperature
damping) of breathing mode :
1/t @l | C1 o
— r
collapse N2/3 kpa 2hFTe
e There is a revival of the breathing mode. At half the
revival time, a Schrodinger cat state.




