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Spin squeezing and atomic clocks

N two-level atoms : Collective spin :
X |
hag, Sx = 225 (Ja)(bl + [b)(al); /2,
Y b> S = )i (la)(al = [b)(bl); /2

Uncorrelated atoms

unc __ 1
DD e

»g Squeezed state
* £
A sq A unc __
uncorrelated atoms squeezed Wab = ¢ Wab \/N T
NAS?2 Spin squeezing parameter
2= L Kitagawa, Ueda, (1993) ; Wineland (1994)

(54)?
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Spin squeezing schemes in atomic ensembles

o Light-Atoms interaction

Quantum Non Demolition measurement of S,
€2 = —3.0dB = 0.5 Vuleti¢ PRL (2010)

€2 = —3.4dB = 0.46 Polzik J. Mod. Opt (2009)
Cavity feedback ¢2 = —10dB = 0.1 Vuleti¢ PRL (2010)

@ Interactions in BEC

Stationary method for BEC in two external states
In a double well £ = —3.8dB = 0.42 Oberthaler, Nature (2008)
In a double well on a chip Reichel PRL (2010)

Dynamical method for BEC
Feshbach &2 = —8.2dB = 0.15 Oberthaler, Nature (2010)

State-dependent pot. £2 = —2.5dB = 0.56 Treutlein, Nature
(2010)
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Dynamical generation of spin squeezing in a BEC

e At t < 0 all the atoms are in condensate a. At t =0, 7/2-pulse

o Factorized state just after the pulse

1 (af +b1\"
= (T ) 0= G M)

o Expansion of the Hamiltonian
AN, M) = E(Ne) + pa(Ny = No) + s (N — Ni)
1 ~ —
+ EaNaua(Na — N2+ ...

NON LINEAR HAMILTONIAN z
[ ]
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Dynamical generation of spin squeezing in a BEC

Best squeezing time Predictions at T = 0 without decoherence :
2 Hwi = hxS?
g
! st ™ # Xtbest ~ N2
toest ' No limit to the squeezing ?

Kitagawa, Ueda, PRA (1993) ; Sgrensen et al. Nature (2001)

WHAT LIMITS SPIN SQUEEZING FOR N — oo 7
o Particle losses : Li Yun, Y. Castin, A. Sinatra, PRL (2008)

e 1/3
5v3 m 7

. 2 _ sve °

i € = (287r ha) (2K1K3>

o Non-zero temperature : A. Sinatra et al. PRL (2011) ;
Frontiers of Phys. (Springer) (2011) ; Eur. Phys. Journ. D (2012)
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Spin squeezing scaling for N — oo

Uncorrelated atoms Squeezed state Heisenberg limit
unc 1 g(N) 1
Awlp© o N Awl} N Awtl N
e Two mode model Hy = hxS?
1 sq 1
N— oo, €&~ N3 = Aw,, ~ HEG

@ Two mode model with dephasing
@ Two mode model with decoherence

o Multimode description at finite temperature or zero temperature

Emin
VN

Explicit calculations to obtain &yin(dephasing), &min(losses),
Emin(temperature), ...

N—oco, E~Emin#0 = Awl} ~
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Two-mode dephasing model

HAMILTONIAN WITH A DEPHASING TERM

H = hwasS; + hx (S2 + DS;)

G. Ferrini et al. PRA 2011, Sinatra et al. Frontiers of Physics 2012

D is a time-independent Gaussian random variable, (D) = 0

(D?)
N

— €noise » N — oo

Although the analytical solution holds Ve gise, typically €npise < 1

@ cnoise < Fraction of lost particles

@ cnoise < Non-condensed fraction in the thermodynamic limit.
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Spin dynamics and relative phase dynamics

a=e% /N, [N,0,]=i
b= e\ /Ny  [Np, 6] =i Initially : N, — Np ~ VN

9 oL
atp = Na(Nb—i—l)e—"((’a—@b) and 0,0, 7N <1

Spin components

N N ) N, =Ny
Sxfav Syffi(eafeb)y 52* 9 '

Heisenberg equation of motion for the phase difference
(02 — 0b)(t) = (02 — 06)(07) — xt (25, + D)
e S5, becomes a copy of S, : squeezing as  xt > % > ‘%gt >1

@ Phase spreading (6, — 0p) ~1as xt~ ﬁ & 2> /N
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Best spin squeezing and spin-squeezing time

2

min

= minimum of &2 over time

Best squeezing Close to best squeezing time

Nooo (D?
51211111 :>>OO % = €noise 52(1‘-77) = (1 + n)grzmn
Ig T SR S T
[ tni b i tni
! ! ! pgt, 1
! ! ! ho ]
- ! ! ! N in
a 0.1F i | I
W E E E ] P8tmin ~ NL/4
[ ) i i i ] A
g, | L] ,
S . T _:_::::: pgt’ﬂ ~ N1/2
A h
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A different conclusion in the weak-dephasing limit

H = hx (S + DS;)

(D?) — constant ; N — oo

(e.g. N — oo at fixed non-condensed particles or lost particles)

231 34(D?) 1
. 2 o 2
Best squeezing &, = WTIE + m +o <N>

tmin 3
Best time pgT = 3V/6pNL/3 %

+0o(1)

We recover in this case the scaling of H = hxS? plus corrections.
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Particle losses: Monte-Carlo wave functions

e Interaction picture with respect to H,; = hxS>

,‘Hult _"Hnlt I'qult _I'Hnl‘
c,=¢€"h ge'"h cp,b=¢€'"h be

o Effective Hamiltonian and Jump operators for m-body losses

ih
Hefr = — Z E,Y(m)ce]‘mcem S6 = 'y(m)cm

e=a,b

o Evolution of one wave function with k jumps

|¢(t)> _ e—iHeff(t_tk)/h5€ke_"HefFTk/h5€k71 o Sele_iHefFTl/h‘w(O)>

@ Quantum averages

G-/ dedts - dt > (U(8)| Ol (1))
k JO0<ti<t<--t<t {ej}
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Jumps randomly kick the relative phase

20 CrT N TTTT N TTTT N TT] 20 [T N TTTT N TTTT N TT1]
£ 1 E 3
a 1°F Elchd E
S, F E 3 . e
<10 4 &10¢ E Relative phase distribution at
2 5E 535; E t:Oandxt:?wipsingl-e
o o | E o ) | 3 Monte Carlo realizations with
1 o0 1 1 6 1 3, 1 and 0 quantum jumps
20 [ T 20 T

L L R L AL R

—_
(o))
—_
o))

[TITT IToIo[ToTT

ca(t)|P)n o< [¢ — xt/2)n-1

cp(t)|[P)n o< |¢ + xt/2)n-1

| FEE FETE

le(¢.271/X)IF
)

(o}

2
le(¢.2m/X)|
o
AR RAREN RARAN RRRE!
9]

(RRNI ARRNI ARRTE ARET

111
TTTT

1

1 L1l ‘ L1l ‘ 11 11 ‘ 111 l
-1 0 1 -1 0

¢ ¢ .
After k jumps [1(t)) o |¢ + XD)y_y with D =151t/ (0c,0 — bc,.a)

|
o

|
o

N.B.: e #XP%t|p) = |¢ — XLD)
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Best squeezing and best time for N — oo

We use the exact solution for one-body losses :
~vt = fraction of lost particles at time t

N — oo Yt = €oss = const K 1

; pst
For long times 2= > 1

2 2 -
e~ T+ (L) a0ty i

pet

20 30 40
pgt/h
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Unified view between dephasing noise and /osses

Particle Losses

Dephasing model

[¥(t)) o |¢ + D)

(02— 05)(t) = (02 — 05)(07) — xt [2S, + D]

D from quantum jumps

D from a dephasing H

s o (DY o o O
pgt/h>1 N ogt/h>1 N

<D2> o lt €loss <D2> o )

N - 3 - 3 N - 6IlOlSe

TEMPERATURE
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Multimode description

Hamiltonian for component a (idem for b)
H = dV 32 ul(r)hoal) + GULULa(r)us().

Before the pulse, the system is in thermal equilibrium in a with T < T..

the pulse mixes the field a with the field b that is in vacuum :

$a(r)(07) — ¥p(r)(07)
V2

1a(r)(07) =

After the pulse the two fields evolve independently
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Bogoliubov description

Bogoliubov expansion : weakly interacting quasi-particles

H,=E + Z ekcjkcak + cubic terms + quartic terms
k£0
Spin components
N, — N,
S, =S, +iS, =dV ! S,=———
=545 Zwa(r)wb(r) 5

In the Bogoliubov description

Sy = ell=0) (g’ + F)

(6 = 06)() = (6 — 0)(0") — £ [(N, — M) + D]

D and F depend on Bogoliubov functions and occupation numbers of
quasi particles c;rkcak after the pulse
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Squeezing parameter evolution
Double expansion in €gj,e = 1/N — 0 and epog = (Nye)/N — 0.

Spin squeezing saturates to a finite value
Spin squeezing as a function of a renormalized time (7 ~ pgt/(2h))

0

IOE T T T T T T T
10']5* 3
Nw :
2 Two-modes result
10°F / 3
-3 Ll Ll Ll Ll L
10"~ .
107 10" 10° . 10' 10° 10°

The limit (D?)/N depends on temperature and interaction strength
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The limit of spin spin squeezing is smaller than the
non condensed fraction

G = B = Vo (D)

Pg

Spin squeezing and the non condensed fraction both divided by +/pa3

2 312 312
S bese/ (P2) " and <N >/N(pa’)

10

—_
S

4

—— I —————
— renormalized squeezing parameter

| |- - renormalized non-condensed fraction

S}
T

10°
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Unified view between dephasing noise and temperature

Dephasing model Multimode T # 0
(0, — 0p)(t)~ — xt[2S, + D] (6, — 0p)(t)~ — xt[2S; + D]
D from a dephasing H Dy, from excited modes population
oy o (DY 2 o (DR
pgt/h>1 N pgt/h>1 N
D? D2
% = €noise < th \% Pa F kB T/Pg) 6Bog




Plan INTRODUCTION DEPHASING MODEL LOSSES TEMPERATURE

Consequence of the physics beyond Bogoliubov
approximation

H,=E + Z ekc;fkcak + cubic terms + quartic terms

L
% S~

At long time the system thermalizes and Bogoliubov approximation fails

To test the validity of the perturbative treatment, we compare the
analytic results with classical field simulations
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Analytics versus Numerics (non perturbative)

Best squeezing Thermalization in simulations

ézmm/(pa} ) 12

<S >/N
X

ks T * *
st = N pa® F (pBg> (Sx) = Re (3_beax) e e (byao) -
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Result : Close to best squeezing time

At the thermodynamic limit, in the perturbative approach, tpest = 0.

. e 1
Definition : £2(t,)) = (1 + 7)&2e: %tn = ——=
V nfbcst
10°F
NECESSARY CONDITION
< 10°E
Eﬁ E t'r/ < ttherln
mﬁ v
s
‘;2:
10 ONE CAN SHOW THAT
-1 L L L L L N
1091 1 10
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At the thermodynamic limit, in the perturbative approach, tpesy = 00

Definition : £2(t,)) = (1 + )2, il =

2t =
h ! \% nggest

NECESSARY CONDITION

] tn < tthcrm
) i

ONE CAN SHOW THAT

t,

1 3\1/4

5o (pad)l/

. L tiherm
10

k,T/pg
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Physical Interpretation

(93—9,,):—% t[N, — Np + D]

LIMIT TO SPIN SQUEEZING

(D?)
D#0 = fzzT;féO pour N — oo

From where this dephasing comes from ?

Hartree-Fock limit kg T > pg, D = N,; — Ny, (and (D?) = N,.):
(6= O)ir = =77 t[Nao = N + (1 4+ 1)(Nos — Ny )

condensate + condensate <> g

condensate 4+ non condensate < 2g
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Condensate squeezing vs Total field squeezing

1005 :
1078 ]
w7 10'2;’ y
el F ]
g r — A
,3’ ]
A 10 g %
_4k L ]
10°E e ]
S R i
107 ‘ | | | O

0 50 100 150 200 250

pgt/h

ks T/pg = 0.5, (Nue)/N = 0.02, \/pa® = 1.32 x 10-2.
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Numerical results in the trap : squeezing as a
function of time

Whe=7.19, N=1.5x 10°

10 i — k,T/=18
— K T/=2.25

K, T/i=3.1
— k,T/=3.6




Plan INTRODUCTION DEPHASING MODEL LOSSES TEMPERATURE

Conclusions

@ Spin squeezing with dephasing, with losses, or in a
multimode theory at T # 0 is limited for N — oo.
We calculate this limit microscopically.

@ A simple dephasing model can effectively describe

both the lossy and finite temperature case. In both S, x2S, +D
cases the limit is given by a fluctuating g ﬂ
perturbation of the relative phase.

@ In the case at finite temperature the perturbation
comes from thermal population of the excited
modes and from the different interaction strength
for c-c atoms and c-nc atoms.

o Condensate squeezing is much worse than the
squeezing of the total field.
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